

Diffraction from a single slit of width a, at wavelength λ :

$$I(\theta) \left(\frac{\sin \beta}{\beta}\right)^2, \quad \beta = \frac{\pi a}{\lambda} \sin \theta$$

Resolution:

 λ/a is also the angular resolution of the slit, or any aperture, when used for imaging objects. Any point is blurred by $\approx \lambda/a$; points separated by less than λ/a in angle are part of the same blur, and are not resolvable.

Objects 1 and 2 are not resolvable; 1 and 3 are

Objects 1 and 2 are not resolvable; 1 and 3 are

Angular resolution

Points separated by less than λ/a in angle are part of the same blur, and are not resolvable.

- FYI: The more precise Rayleigh Criterion for a circular aperture of diameter a:
 - The angular resolution $\theta_r = 1.22 \lambda/a$.

Bigger diameter (a) \rightarrow Better (smaller) angular resolution – a reason to build large telescopes.

What if you can't build a larger telescope?

Build several and combine their signals as if they were part of one giant telescope. Interferometry: telescopes with baseline (separation) b acting as one telescope with aperture a = b. (Typically radio telescopes.)

The "Very Large Array", made of 27 radio telescopes in New Mexico. Each antenna has a diameter of 25m, and the complete array has an effective baseline of 22 km.

Diffraction of matter

Diameter 1 nm.

(from http://www.quantum.at/research/matterwave/c60/index.html)

Diffraction of C_{60} :

"Wave-particle duality of C₆₀" Markus Arndt *et al. Nature* **401**, 680-682, 14 October 1999.

Diffraction of C60:

"Wave-particle duality of C60" Markus Arndt *et al. Nature* **401**, 680-682, 14 October 1999.

 C_{60} molecular beam; grating with D = 100 nm.

1. ...

Phys. 352:

Diffraction of C60:

"Wave-particle duality of C60" Markus Arndt *et al. Nature* **401**, 680-682, 14 October 1999.

The angular position of the first diffraction peak is 25 μ rad; C₆₀ wavelength is therefore 2.5 pm – 400x smaller than its diameter.

