Phys. 352: diffiraction

Diffraction from a single slit of width a, at wavelength λ :

$$
I(\theta)\left(\frac{\sin \beta}{\beta}\right)^{2}, \beta=\frac{\pi a}{\lambda} \sin \theta
$$

Resolution:

λ / a is also the angular resolution of the slit, orany aperture, when used for imaging objects. Any point is blurred by $\approx \lambda / a$; points separated by less than λ / a in angle are part of the same blur, and are not resolvable.

Phys. 352: diffiraction

Objects 1 and 2 are not resolvable; 1 and 3 are

Phys. 352: diffiraction

Objects $\mathbf{1}$ and $\mathbf{2}$ are not resolvable; $\mathbf{1}$ and $\mathbf{3}$ are

*3
*2
*1

Phys. 352: diffiraction

Angular resolution

Points separated by less than λ / a in angle are part of the same blur, and are not resolvable.

(
FY: The more precise Rayleigh Criterion for a circular aperture of diameter a:

The angular resolution $\theta_{r}=1.22 \lambda / a$.

Phys. 352: diffiraction

Bigger diameter (a) \rightarrow Better (smaller) angular resolution

- a reason to build large telescopes.

What if you can't build a larger telescope?
Build several and combine their signals as if they were part of one giant telesc ope. Interferometry: telescopes with baseline (separation) \mathbf{b} acting as one telescope with aperture $\mathbf{a}=\mathbf{b}$. (Typic ally radio telescopes.)

Phys. 352: diffraction

The "Very Large Array", made of 27 radio telescopes in New Mexico. Each antenna has diameter of $25 m$, and the complete a ray has an effective baseline of 22 km .

Phys. 352: difffaction

Diffraction of matter

Phys. 352: diffiraction

Diameter 1 nm.

(from http://www.quantum.at/research/matterwave/c60/index.html)
Diffraction of C_{60} :
"Wave-particle duality of C_{60} " Markus Amdt et al.
Nature 401, 680-682, 14 October 1999.

Phys. 352: diffiraction

Diffraction of C60:

"Wave-particle duality of C60" Markus Amdt et al.
Nature 401, 680-682, 14 Oc tober 1999.
C_{60} molecular beam; grating with $\mathrm{D}=100 \mathrm{~nm}$.

Phys. 352:

Diffraction of C60:

"Wave-particle duality of C60" Markus Amdt et al. Na ture 401, 680-682, 14 October 1999.

The a ngular position of the first diffraction peak is 25 $\mu \mathrm{rad}$; C_{60} wa velength is therefore $2.5 \mathrm{pm}-400 \mathrm{x}$ sma ller tha n its dia meter.

